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ABSTRACT 

This report presents shadow data and heat input data for the S-49 

EGO. It gives times for  which each experiment i s  in the shadow of 

either the Earth, the satellite's main box or  the solar array. It also 

gives the heat inputs to the experiments a s  a function of time from 

launch for one complete orbit. The heat inputs include direct solar 

radiation, reflected solar radiation and Earth emitted radiation. 

The shadow data a re  presented fo r  a launch date of May 15, 1964 

at 13.0 hours U.T. The heat input data a re  for a launch time of May 

15, 1964 at 8.0 hours U.T. The injection elements a re  from Reference 

2. The satellite's geometry i s  from References 3 and 4. w 
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I. INTRODUCTION 

The Orbiting Geophysical Observatory (OGO) consists of a main 

box, the solar array and the orbital plane experiment package (OPEP). 

Experiments may be appended to  any of the three main component par ts  

either directly o r  on booms. As many as fifty experiment packages 

may be carried on the OGO spacecraft. 

array and the OPEP may rotate relative to the main box. 

(See Figure 1). The solar 

The main box 

and the solar array a r e  considered as casting shadows and carrying ex- 

periments, the OPEP i s  considered only a s  carrying experiments. A 

method for calculating the radiant heat inputs to each experiment is 

also presented in this report. 

flected solar and Earth emitted heat flux. If an experiment i s  shielded 

from the Sun by the Earth, the main box or  the solar array,  the solar 

These inputs include direct solar, re -  

input to that particular experiment is set to zero. If an experiment is 

in the eclipse of the Earth the reflected solar (as well as the direct 

solar)  heat input is set equal to zero. 

ing of an experiment from the Earth by the main box o r  the solar array 

However, the effects of shadow- 

i s  not considered in the computation of the solar reflected or  Earth 

emitted heat inputs to that particular experiment. Shadow data a re  

presented f o r  the S-49 _(EGO) for a launch date of May 15, 1964 at 13.0 

hours U.T. The heat input data are f o r  a launch time of May 15, 1964 
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at 8.0 hours U.T. 

S-49 geometry is from References 3 and 4. 

The injection elements are from Reference 2. The 

[ $ 1  7445’ 2 



II. NOTATION 

A Cross sectional area. 

a The fraction Qf the solar constant CT which is re- 

flected away from the Earth (albedo). 

a, The equatorial radius of the Earth. 

f ( y l ,  y 2 ,  y 3 ,  r )  The integrand of the integral for qna ( t  ). In 

equation (47) it i s  defined on page 38. 

f ,  ( y z ,  y 3 ,  r )  The integrand of the integral for qnE ( t ) .  In 

equation (60) it is defined on page 44. 

f (  i )  Incidence factor defined by equation (45). 

- - - 
H = rVE x rVE ; the angular momentum vector per unit 

mass. 

I( t) Shadow indicator at time t ; 0 in shadow, 1 not in 

shadow. 

i Angle of incidence. 

- _ -  
i ,  j , k Orthogonal unit vectors. 
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- 
= ( a ,  b ,  c) ; the 3-vector representing the line 

connecting the projections of points j and j t 1 onto 

a test  plane, a s  defined by equations (20, 21), and 

appendix C. 

Lj.j+l 

- - - 
1 j ,  j t 1 = 

- Pj +I J 
” - p.” ; as  used in appendices C and D. 

- 
Outward normal to an elemental a rea  AAlm of the 

Earth’s surface; it is defined in equation (49). 

‘ 1 ,  

- 
n Unit vector normal to an experiment surface. 

- 
Pi Augmented position vector (xi”, y;, 1) . 

- 
p;I A position vector (x;, yi, ) defined by equation (17). 

- 
Q, Augmented position vector ( x:, y,“, 1 ) . 

- 
q,” A position vector (x,” , y,”) defined by equation (1 8). 

- 
q A position vector used in appendix B. 

qnE ( t )  The heat flux incident upon a surface of the nth ex- 

periment at time t , which is emitted by the Earth, 

It is given by equations (60) and (62). 
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qnE The accumulated heat flux qnE over a time interval; 

it is defined by equation (63). 

I -  

i 
I -  

( t )  The heat flux incident upon a surface of the nth ex- 

periment at time t , which originates at the Sun and 

reflects from the Earth. It is defined by equations 

(47) and (58). 

The accumulated heat flux 4, 

interval; it is defined by equation (59). 

( t )  over a time qrla 

&,s ( t ) .  The heat flux incident upon a surface of the nth ex- 

periment at time t , which radiates directly from 

the Sun. It is defined by equation (43). 

qns The accumulated heat flux G n S  over a time interval; 

it is defined by equation (46). . 

E Augmented position vector (x, y , z ,  1 ), (a 4-vector). 

- 
r A position vector (x, y, z ). 

- 
rVE The vector which points from the Earth to the 

vehicle. 

- 
rVE The velocity of the vehicle relative to the Earth. 

5 



- 
The vector which points f rom the satellite to the 

Earth's elemental surface a rea  &Izm. It i s  given 

by equation (51). 

' trn 

- 
The vector which points from the vehicle to the 

Sun. 

'SV 

- 
The vector which points from the Earth 's  elemental 

surface area DA,, to the Sun. 

' S t m  

- 
The vector which points from the Earth to the Sun. ' SE 

- 
si = ( A ~ ,  B ~ ,  c i ,  D ~ )  ; a 4-vector representing a face 

defined in equation (3 ) .  

s Defined by equation (10). 

t Time. 

t o  Reference time. 

- 
U (1, 1,  1); a.vector. 

u Defined by equation (22). 

6 



- _ -  
x ,  y, z The coordinate system associated with i ,  j , k, 

respectively. 

a The angle corresponding to the longitude in the 

plane normal toFvE,  the zero line being the projec- 

tion of iB on this plane. (See Figure 5). 

am The value of a associated with the elemental a rea  

&Ilm; defined by equation (50). 

p The angle between FVE and the tangent to the Earth 

from the satellite; (equation 48). 

y1 The angle of incidence of the Sun's rays on an 

elemental area of the Earth's surface. 

ylIm The value of y1 associated with the elemental a rea  

CIAzm. It is the angle between the vectorsNzm and 

r s z m  (Figure 5). It appears in equation (52). 
- 

y 2  The angle between the radius vector which points 

from an elemental area of the Earth 's  surface to  

the vehicle and the normal to that area. 

7 



The value of y 2  associated with the elemental area 

AA Im' It i s  the angle between the vectorsNI, and 

(-Tim) (Figure 5). It appears in equation (54). 

The angle between the vector which points from 

the vehicle to an elemental a rea  of the Earth's 

surface and the unit outward normal to the ex- 

periment surface. 

The value of y3 associated with M l m .  It is the 

angle between the vectors n and TI, (Figure 5 ) .  

appears in equation (55). 

It 

An incremental surface a rea  of the Earth (Figure 5); 

it i s  defined in equation (57). 

The angle between the vector r,, and the radius 

vector from the center of the Earth to the surface 

element in question. 

The value of 19 associated with the elemental a rea  

AA,,. It is the angle between N l m  and r V E .  Equa- 

tion (50). 

- 
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A The emittance per unit area of the surface of the 

Earth. 

v The solar constant 

Q, The solar array angle; defined by equation (35).  

(Figure 1) .  

\I' The O P E P  angle; defined by equation (42). (Figure 1) .  
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Superscripts and Subscripts 

Denotes rotated coordinates in equations (4), (5), 

(7) ,  (8) and (9).  Also denotes a change of origin 

location in equations (14) and (1 5). 

" Denotes vectors in the test plane. 

B Box. 

n Referring to the n th  experiment. 

p Solar array.  

p, Referring to a point on the solar array axis. 

T OPEP. 

To Referring to a point on the OPEP axis. 

10 



Vector Operations 

A x  B The cross product of the irectors A andB . 
- 
A B The scalar product of vectors andB . 

dF dF - dF 
1 ax + J + k ; the gradient of the scalar 

functionF . 

11 



III. ASSUMPTIONS 

A. Initial Conditions 

The initial conditions are assumed to be the same as  the Agena 

burnout conditions (Reference 2) namely: 

geocentric latitude = -20.28 degrees 

te r r e s t r ial  longitude = 111.902 degrees 

geocentric height = 281621.6 meters 

the speed of the vehicle = 10645.27 meters per second 

azimuth = 66.355 degrees 

flight path angle = 1.47148 degrees 

B. Restraints on Launch Time 

The results presented in  this report a r e  for launch times for which 

perigee does not go below its initial value for one year. See Reference 

5 for the results of a detailed launch window study. 

C. S-49 Spacecraft Geometry 

The assumed geometry, presented in this section, is given in the 

box coordinate system. The center of gravity (c.g.) of the spacecraft 

was arbitrarily chosen as the origin. The coordinates of the solar 

paddles and the OPEP a re  given in a standard position relative to the 

, -  

box (solar array angle a = 0 and OPEP angle Y = 0) together with the 

location of their axes of rotation. 

12 



1. Shadowing Surfaces 

a. Main Box - The box coordinates of the vertices (corners) 

of the main box are a follows: (See Figure 2). 

X 

inc he s 
Y 

inches 
z 

inches Point 

- 14.607 23.5 14.983 

-14.607 -43.5 14.983 

14.607 -43.5 14.983 

14.607 23.5 14.983 

- 14.607 23.5 -14.983 

-14.607 -43.5 -14.983 

7 

8 

14.607 -43.5 -14.983 

14.607 23.5 -14.983 

b. Solar Array - The coordinates of the solar a r r ay  are as 

follows: (See Figure 2). 

X 
inches 

Y 
inches 

2 

inches Point 

P1 - 1 1 7.841 0.0 -36.877 

P2 -117.841 

P 3  - 39.541 

P4 - 39.541 

P 5  - 26.491 

0.0 36.877 I '  
0.0 36.877 

0.0 18.677 

0.0 18.677 

P 6  - 26.491 -18.677 0.0 
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Point 

P7 

P8 

P9  

P10 

P11 

P 1 2  

P I  3 

P14 

P15 

P16 

X 

inches 

- 39.541 

- 39.541 

117.841 

117.841 

39.541 

39.541 

26.491 

26.491 

39.541 

39.541 

Y 
inches 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Z 

inc he s 

-18.677 

-36.877 

-36.877 

36.877 

36.877 

18.677 

18.677 

-18.677 

- 18.677 

-36.877 

The axis of rotation of the solar array passes through the point 

tP.' YP0 9 2 Po ) = (0, 0 , o ) .  

2. Experiments 

The coordinates of the experiments and their normals a r e  as 

follows (See Figure 2). 

COORDINATES 

X Y 
Inches Inches Expe rime nt 

E.P. 1 

E.P. 2 

E.P. 3 

- 74.2 91.1 

49.9 100.1 

- 12.7 103.1 

Z 

Inches 

12.3 

15.3 

- 4.2 

14 



Experiment X 

Inches 
Y 

Inc he s 
1 

Inches 

E.P. 4 20.6 - 94.4 -19.2 

E.P. 5 

E.P. 6 

SOEP 1 

SOEP 2 

OPEP 1 

11.4 288.1 -25.2 

- 6.7 -288.9 -16.7 

-102.7 3.4 - .30 

102.4 3.4 - .30 

- .2 43.1 45.8 

OPEP 2 - .2 43.1 -45.8 

The axis of rotation of the OPEPS passes through the point 

(xTo' YT: 'To ) = ( 0 ,  43.5, 0). 

Normals X Y z 

E.P. 1 

E.P. 2 

E.P. 3 

E.P. 4 

E.P. 5 

E.P. 6 

SOEP 1 

SOEP 2 

OPEP 1 

OPEP 2 

-1.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

1.0 

1.0 

0.0 

1.0 

1.0 

-1.0 

1.0 

-1.0 

1.0 

1.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

15 



IV. MATHEMATICAL MODEL FOR SHADOW TESTING 

A. General Description of the Shadow Computations 

In order to  carry out the shadow computations, the geometry of 

the satellite (the main box, the solar array,  and the experiments) has 

to be described analytically. The configuration of the satellite is 

described in a coordinate system which is fixed in the main box. 

shadowing of experiments by the main box and the solar array i s  de- 

termined by testing the shadow cast by each of their component faces. 

The 

This may result in some duplicate testing, since part of the faces may 

overlap, but no special assumption need be made as to  its shape. Any 

three dimensional object may be approximately described by a number 

02 plane faces. 

The geometry of the satellite is input to the program by loading 

the coordinates of all its vertices and identifying the vertices belong- 

ing to each component face. 

circumscribing each component face be convex. 

re-entering edges can and must be avoided by subdividing the cor- 

Care must be taken that the polygon 

The occurrence of 

responding face into several convex polygons. The coordinates of 

points on the solar paddles and the OPEP a re  given' in a standard 

position relative to the box (solar array angle ID = 0 and OPEP angle 

Y = 0) together with the location of their axes. 

compute the rotation angle of the solar a r ray  and OPEP from their 

The program will then 

16 



attitude control logic and obtain the position of shadowing surfaces and 

experiments attached to paddles and OPEP. 

The program operates by transforming the coordinates of the Sun 

and the Earth into the box coordinate system by means of a transforma- 

tion matrix described in section IV-C. 

Fewer points a r e  involved in this transformation than in the r e -  

verse process. 

all the faces a r e  then computed and the location of the experiments 

within o r  outside these cylinders is tested. If any experiment i s  found 

to  be inside the shadow cylinder of any one surface, this experiment is 

In this box coordinate system, the shadow cylinders of 

in the shadow and no further testing is necessary for this experiment. 

Similarly, i f  the satellite is in the shadow of the earth,  no shadow 

testing will be performed for any of the faces. 

B. An Experiment Shadowed From the Sun by a Polygonal Plane Face. 

1. The Equation of a Plane Formed by a Surface of the Main Box. 

The vertices of the box a r e  denoted by Ti ( i  = 1.2, ’ N). Out 

of these N points various sets  of k points (k 2 3)  a r e  given as vertices 

of the corresponding faces. The first three points of each such set a r e  

used to determine the equation of the plane in which the face lies. 

Care must be taken in the selection of these points, so that an 

accurate description of the surface is obtained from these points. In 

particular they must be chosen to lie on edges which a r e  not too short 

17 



and not near parallel. This can always be achieved by arranging the 

points.in proper order. If the first three points on the surface a re  

- -  
denoted by r , rm and 'T, the equation of the surface may be written in 

the form (see Appendix A). 

o r  alternately by: 

A i x  t B i y  t Ci z t Di = 0 (2) 

The four vector (Ai, Bi ,  Ci, Di) is denoted by Si and i s  taken as the 

analytic representation of the plane containing the ith face. 

vectors r ,  r 1,  rm and yn a re  in a coordinate system which is fixed to 

the main box. If the three-vector ( x  1 ,  xm , xn) is denoted by Xlmn with 

the corresponding notation for Ylmn and Zlmn and U is defined a s  the 

vector = (1, 1, 1) (see Appendix A) ;  consequently. 

The 

- -  - 



2. The Equation of a Plane Formed by a Surface of the Solar Array. 

- 
r .  and Ti1 represent position vectors of any solar a r ray  point in 

- 
i ts  zero and rotated position respectively. 

of any point on the axis of rotation. 

the x-axis, hence 

rpo represents the coordinates 

The axis of rotation i s  parallel to  

I -  xi - xi  

y,, + ( y i  - y p o )  cos @ -  z i  - z p o )  s i n  @ Y l  - 

z i  - zpo + (yi ypo)  s i n a t  ( z i  - zpo)  cos@ 

( 
I -  

- I -  

(4) 

where a i s  the angle of rotation. (See Figure 3 ) .  

Introducing the Notation: 

Axi = x i  - x  with corresponding definitions for Ayi , Azi, equation 
P O  

(4) can be rewritten: 

I -  x i  - x i  

Ayil 

Azil 

Ayi cos @ - Azi s i n @  

Ayi s i n @  + Azi c o s @  

(5) 

Equations (4) or  (5) give the coordinates of any point attached to the 

paddle in i ts  rotated position. 

The rotated position coordinates of any three points on the 

surface can be used to obtain the vectors describing the planes 

containing the paddle faces. It is, however, more convenient to 

car ry  out the transformation directly on the vectors ( A i ,  Bi,  C i ,  Di) 

19 



describing the plane, by equation (2). The 4-vector ( A i ,  B i t ,  Cis Di') 

describing the rotated plane i s  given in terms of xL&.,, Y z k n ,  Z;,, by 

means of equation (3) where 

- - 

- 
with corresponding definitions for PZ',,,,, and ZZ(,, . 

Further 

Ax = x -  x p o u  

Az = z - z p o u  

- 
AV = Y - y p o U  

where the subscripts z, m ,  n have been dropped for convenience. In 

terms of these quantities: 
- - 
X '  = x 

y '  = u t AVcos@ - @ s i n @  

2' z t ATsin@ t @ C O S @  

- - 

Y P O  

- 
PO 

(7) 

Substitution of Equation (7)  into (3 )  then results in the following equations: 

A '  = A 

B' = B c o s Q , - C s i n @  



3. OPEP Points. 

The O P E P  i s  assumed to be carrying only experiments, hence only 

the formulae concerning transformation of points a r e  necessary. 

the rotation takes place about an axis parallel to the z-axis. 

a r e  consequently : 

Further, 

The formulae 

Xi' 

Yi 

= xTo + (xi - xTo) cos Y - ( y i  - y T o )  s i n  Y 

y T o  + (xi - xTo) s i n  Y + ( y i  - yTo) cos Y I -  - 

'i z = 

( 9 )  

where \y is the angle of rotation. (See Figure 4). 

4. Sunny o r  Shady Side Test. 

In terms of these vectors the sign of the product, 

(si * Rj)  (si Rk) = s (See Appendix B) 

determines the position of points T j  and rk relative to surface si .  In 

particular i f  s < 0 ,  yi and r, lie on opposite sides of the surface, and i f  

s > 0, r j  and 7, lie on the same side of the surface and for s = 0 at 

least one of the points lies on the surface. If now yj represents the 

Sun's coordinates and f,  the coordinates of an experiment to be tested, 

s - > 0 means then that the surface si cannot cast a shadow on experi- 

ment r,. If ,  however, s < 0 further tests have to be performed to 

- 



determine whether the experiment l ies inside o r  outside the shadow 

cylinder of the face. 

Fo r  the box surface si is defined by equation (3). For  a solar 

a r r ay  surface si is defined by the 4-vector ( A ' ,  B', C l , D ' >  which is 

given in equation (8 ) .  

If an experiment is attached to the main box its augmented position 

vector 

- Rj  - ( X j ,  Y j ,  Z j l  1) 

may be substituted directly into equation (10) for the test. Lf the ex- 

periment is attached to  the solar a r ray  

- 
I I  R j  = ( X i ' ,  Y j  1 z j  , 1) 

where 

X j l ,  Y j l .  Zjl 

a r e  given by equation (4). If an experiment is attached to  the OPEP 

(1 3) 
- 
R j  ( x j ' , y j ' ,  z j ' ,  1) 

where 

are given by equation (9). 
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5. Shadow Cvlinder Test 

If s < 0 (where s is  defined in equation (10) above) this establishes 

that the Sun and the experiment lie on opposite sides of the surface. 

Further tests have to be performed to determine whether the experiment 

lies inside o r  outside the shadow cylinder of the face. 

This testing i s  accomplished by projecting both face and experi- 

ment onto a plane perpendicular to the Sun’s radius vector. A polygonal 

face will always be projected into a polygon, unless the Sun’s radius 

vector is  parallel to the face, in which case no further testing need be 

performed for this combination of surface and experiment. Let the f i rs t  

vertex T, (chosen arbitrarily from among the M vertices on the face) and 

- -  
the other vertices r,,, r q  . . . . . . . etc. (taken in order around the face) 

be renamed Ti ( i =  0 .  . . . M -  1). 

If To i s  now chosen a s  origin, the coordinates of the vertices 

relative to this origin a re  given by: 

I -  r i  - r i  - 

in particular 

~ 

To’ = (0, 0, 0) 

Further 
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where r,, is the vector from satellite to Sun. (Note: because of the 

- relative size of the components of ysv and To the vectors riv and rsv 

will in general be numerically identical). 

In te rms  of these vectors, a coordinate system is now set up in 

the test  plane (i.e. the plane perpendicular to riv by means of the 

unit vectors T", 7'' . 

The coordinates of the projections of the vertices onto the test plane 

a re  now given by: 

I I  - - i l l  + y i l l  7,, 
Pi  - 

where 

( i  = 0 M - 1 )  

24 



and the coordinates of the projection of the experiment ( n )  a r e  given by:. 

In this test plane, the shadow cylinder is represented by a polygon with 

the M sides 

- 
L j , j + l  ( j  = O . . * M - l )  

where Lj  , j  

vertices f . '  andTjil (Note: In this connection it is convenient to 

equatef"' to fo'). The equation of the side cj,jtl  i s  given by (See 

Appendix C): 

i s  the straight line containing the projection of the 

J 

1 Y 'I x ' I  

x 1 .'I Y j" 1 = o  
X .  j i 1  y j 'il 1 

or  alternately: 

a. x'' t b j y "  t c j  = 0 
1 

25 



where 

- 
The vector ( a j ,  bj, c j )  is taken to represent the line 

three vector on = (IC:, y i ,  1) represents the point qn)); and let 

Lj, j+l  and the 

represent the j t 2 vertex of polygon projected onto the tes t  plane. In 

t e rms  of these vectors, the experiment represented by the vector an 
l ies inside the polygon in  the tes t  plane (and consequently inside the 

shadow cylinder of the face) if: 

for all j between 0 and M -  1. See Appendix D for the mathematical 

derivation of this expression. 

C. Ideal Control Laws and Definition of Axes Svstems 
~~ ~~ 

The geometry of the OGO satellite is described in a coordinate 

system attached to  the main structure, (box coordinates), whereas the 

orbit and consequently the vectors from the Sun and Earth to  the sat-  

ellite as well as the velocity of the satellite a r e  given in a different 
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coordinate system. In order to carry out the tes t  described in section 

IVB, the components of all vectors have to be known in a single coordinate 

system. It is convenient to use the box coordinate system to  carry out 

this testing, since fewer transformations have to  be made. 

In order to relate these coordinate systems and to establish the 

transformation matrices, the ideal control laws for the OGO satellite 

were assumed. Further, these relations a re  written entirely in te rms  

of the vectors TVE, rVE 

be valid, no matter what coordinate system is used in describing the 

orbit. 

- - 
and rsv. Consequently, the transformations will 

In order to  describe the transformation from the orbital to the 

box coordinate system, a matrix i s  established. In addition, an angle 

of rotation must be determined for the solar array and another for the 

OPEP. 

In the following, four coordinate systems a re  considered. Each 

- - -  
coordinate system is  defined by a triple (i, j ,  k) of mutually orthogonal 

unit vectors. 

identified by subscripts B, p and T respectively. Quantities without 

subscripts refer to the orbital coordinate system. 

The systems attached to box, solar a r ray  and OPEP a r e  

- 
The three vectors TVE, rVE, 

the satellite with respect to  

respect to the satellite) a r e  

- 
rsv (the position and velocity vector of 

the Earth and the position of the Sun with 

given in the orbital coordinate system. 
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1. The Orbital To Box Transformation Matrix. 

The ideal control laws a r e  specified in Reference 5. 

a). The positive z, face is aligned with the radius vector f rom the 

center of the Earth to the satellite. 

b). The solar array is normal to incident sunlight. 

c). The Sun does not shine on the positive yB face. (Reference 5). 

d). The positive x face of the OPEP faces forward in the plane of 

the orbit. (Reference 6). These laws lead to the following 

equations : 

Due to a). 

- 
- - 'YE k, - - -  

I'VE I 

Due to b). 

Since the paddle rotates about an axis parallel to i, 

- j, = - j,cosCP + E, sin@ 

l -  

From (equation 25) 



and by definition 

Consequently 

The vector triple i s  completed by defining 

- - - - 
j, - k, x i, 

According to c ) .  

Equation (28) resolves the ambiguity in equation (26) as follows: Sub- 

stituting from (26) into (27): 

From (24) 
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I .  

From equations (28), (29) and (30) 

- - 
0 ' j, * rsv = * lTSVl[('B . - jp)2 - q 5 2  

In Equation (32) the t e rm Ir,, I [sin2 Q, - 11 is less  than or equal to zero, 

it follows that the plus sign must be chosen in equations (26) and (29). 

If now r is an arbitrary vector with components x, y, z in the orbit 

system and coordinates x,, yB, zB in the box system 

o r  in  matr ix  notation 

I -  I .  

k, i 

- - -  
i, - k 

The vectors zBs TB, XB a r e  defined by equations (23), (26) and (27). 

(34) 
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2. The Solar Array Angle @. 

The solar array zingle @ is obtained f rom equations (24) and (25). 

For the transformations, only cos @ and sin@ a re  needed, the angle @ 

need not be computed. 

3. The OPEP Angle Y. 

The vector 2, i s  in the plane of the orbit and 

The orbit plane is defined by the angular momentum’vector a 

- - - 
H = rVE x rvE 

- 
H is normal to the orbit plane hence 

Further, ?, points in the direction of motion, i.e; 

(37) 



Substituting (23) and (37)  into (38) yields: 

Substituting (40) into (39): 

by Schwartz's inequality the expression in braces is positive, hence 

the plus sign has to be selected in equation (38). 

The vector triple is now completed by: 

The OPEP angle Y is now obtained from the equations: 

Again, for the transformations, only cos Y and sin Y a r e  needed. 

D. Detailed Shadow Testing Procedure. 

The equations of the planes containing the potential shadowing 

faces a re  established initially and the corresponding vectors (A,, 
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B,, C,, D,,) . As described in equations (1) and (2) a re  computed and 

stored, together with the list of i ts  vertices. This is done initially for 

both box and solar array faces. The solar a r ray  faces, however, must 

be rotated at every test  time after the angle 0 has been established 

according to equation (8). The testing at every point i s  now carried out 

in the following sequence: 

1. Satellite Earth Shadow Testing. 

It i s  determined whether the satellite is in the Earth's shadow 

cone. If it is, the possible shadowing effect of satellite components 

need, of course, not be determined. If this test, however, shows the 

satellite to be in the sunlight, testing has to be carried out for  each 

individual experiment a s  follows: 

2. Individual Experiment Testing. 

a). The matrix described in equation (34) i s  computed. 

b). The solar array angle Cp is computed by equations (35). 

c). The OPEP angle Y is computed by equations (42). 

d). The coordinates of Sun and Earth with respect to the 

box a re  transformed from the orbital to the box 
I 

coordinate system by equation (34). 

e). The coordinates of the experiment a r e  transformed, 

if necessary, (i.e. if the experiment moves with either 

the solar a r ray  o r  the OPEP) by equations (4) or  (9) 

respectively. 
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Items a)  through d) of this list to be performed only once for each set 

of tes ts  (i.e. for each time point). Item e )  has to  be performed for each 

experiment. 

After all this setup work has been completed, the shadow tests a r e  

carr ied out for this particular experiment designated by (n)  a s  follows: 

All the faces a re  tested in turn until: 

a. Either all surfaces have been tested and it has been established 

that none casts a shadowon experiment (n)  . In this case, experiment (n )  

has been established to  receive incident sunlight and the next experi- 

ment (n  t 1) is tested. 

b. Or a face has been found which casts a shadow on experiment 

(n )  . In this case, experiment (n)  has been established not to receive 

incident sunlight, the effect of the remaining faces need not be examined, 

and the next experiment ( n  t 1) is then tested. 

The hierarchy of tests, f o r  a particular experiment (n)  and face (i) 

is described in the following: 

1. Test whether face (i) is connected to solar array,  and carry 

out, i f  necessary, the transformation described in equations (8). 

2. Test whether the experiment lies on the sunny side or  the 

shady side of the plane containing face (i) by using the augmented 

box coordinates of the Sun a s  Bj and the augmented box coordinates 

of the experiment a s  Rk and substituting in equation (10). 
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If s > 0 the experiment i s  on the sunny side, this face cannot cast 

a shadow on experiment ( n )  and the next face i s  then tested. 

If s = 0 either the Sun, or  the experiment, o r  both lie on the sur -  

face and the surface i s  assumed not to cast a shadow on experiment ( n )  . 
In this case, the next face i s  tested. 

If s <  0 the experiment ( n )  lies on the shady side of face si. See 

Appendix B for  more details. If it also lies within the shadow cylinder 

of the face i t  will be in shadow. 

3. 

face (i). In order to  carry out this test, the following steps have to be 

taken: 

Test whether experiment ( n )  is within the shadow cylinder of the 

- - 
a). Compute the vectors Ti ' ,  rol and rS;  for the experiment 

( n )  , all the vertices of faces (i) and the Sun by equa- 

tions (14) and (15). 

b). Set up the coordinate system ( i", j " )  in the test plane 

by equation (16). 

Compute the coordinates (x", y") of the vertices and 

the experiment in the test plane (i.e. the plane normal 

to the Sun's radius vector), by equations (17) and (18). 

c). 

d). Compute u by equation (22)  for edge ( j ) .  
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If u < 0, the experiment lies outside the shadow cylinder of this 

face, this face does not shadow experiment (n) and the next face i t 1) 

is then tested. 

If u = 0 the experiment is also taken to be outside the shadow 

cylinder and the next face (i + 1) is then tested. 

If u >  0 for the j f h  edge the next edge ( j  + 1) of the face is tested 

until one edge has been found for which u <O. Then this face (i) 

does not cast  a shadow and the next face (i + 1) i s  tested. If  al l  

edges of a face have been tested and u >  0 for all  edges then this 

face (i) casts a shadow on experiment (n) . The program then 

proceeds to the next experiment (n + 1). This is explained in more 

detail in Appendix D. 
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V. MATHEMATICAL MODEL FOR HEAT INPUTS TO AN 

ARBITRARILY ORIENTED SURFACE OF OGO. 

A. Direct Solar Radiant Heat. 

This is the heat flux qns ( t )  incident upon a surface of the nth ex- 

periment at time t, which radiates directly from the Sun. It is given by: 

here: 

o r  Sun, c i s  the incident radiation on a unit a rea  at a distance of 1 AU 

from the Sun, and in the angle of incidence given by 

I ( t )  = 0 or 1 depending on whether the experiment i s  in shadow 

where An is the normal to the experiment surface in box coordinates. 

If cos in < 0 , the experiment surface faces away from the Sun and 

receives no radiation. This is expressed formally by 

In the case of an earth satellite the variation of lysvl is too small to  

mat ter  and a constant value may be used. The accumulated radiation 
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between times to  and ( t o  t M t )  i s  given by: 

where 

An = the a rea  of experiment ( n )  . 

B. Reflected Solar Radiant Heat. 

This is the heat flux qna ( t ) ,  incident upon a surface of the nth e x -  

periment at time t, which originates at the Sun and reflects from the 

Earth. In integral form (See Figure 5). 

where, 

a = the albedo = the fraction of the solar constant D which i s  

reflected away from the Earth. 

(Reference 7). 

The value for a is about 0.34 

D = 1.97 f 0.01 cal cm-* minutes-‘ = 0.1374 watts cm-2 = flux 

of ‘total radiation received outside the Earth’s atmosphere 

per unit area at mean Sun-Earth distance (Reference 7). 
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cosy1 cosy2 ' O s y 3 )  i f  cos y1 > 0 and 
rrr cosy2 > 0 and cosy3>0 

f a  = 0 i f  c o s y l ~ O  or  cosy2z0  or  c o s y 3 L 0  

dA = an elemental a r ea  of the Earth's surface (Figure 5). 

y1 = the angle of incidence of the Sun's rays on the Earth's sur -  

face element (Figure 5) .  

y2  = the angle between the radius vector r which points from dA to 

the vehicle and the normal to  the Earth's surface element dA 

(Figure 5). 

y3  = the angle between the vector T and the unit outward normal 

to the experiment surface (Figure 5). 

- 
r = the vector which points from the vehicle to dA (Figure 5). 

The method of numerically evaluating Equation (47) is given in the 

f ollawing pa rag raphs. 

Let 0 be the angle between F,, and the radius vector from the 

center of the Earth to the surface element in question, and a be the 

angle corresponding to the longitude in the plane normal to iv, the 

zero  line being the projection of 7, on this plane. (See Figure 5). 

The part of the sphere which the satellite can see is then 

characterized by 



where 

a E  
c o s p  = 

I'VE 1 

here aE is  the radius of the Earth. 

divided such that 

The range of 8 and a is  now sub- 

The normal to the Earth's surface element AA,, is  approximated by 

- - 
(49) 

- - 
N,, = i, s i n  8 ,  cos a,,, - j ,  s i n e ,  s i n a ,  - k, cos 8, 

where 

... 
1 = 0, 1, 2 ,  3 , L - 1  

- (1 + 3)P  *, - L '  

(50)  
- % (m+ $) ... M 9 m = 0, 1, 2 ,  3 , M-1 a m  - 

The position vector of this surface element from the satellite i s  given 

by : 



Note that the FvE vector in this equation i s  given in the box coordinate 

system. 

It may now be determined whether radiation from this segment of 

the Earth 's  surface reaches experiment ( n )  by using vector T,, in place 

of the Sun vector fs, in the tes t s  described in section IV. Note in 

particular that the only additional set up work which has to be done is 

the transformation of the experiment into box coordinates (item e when 

necessary) and only the tes ts  have to  be performed. 

The cosines of three angles determine the amount of incident 

radiation received from the lit surface of the earth. They are:  

a). The angle of incidence y 1  of the Sun's rays on the surface 

element. This cosine determines the intensity of the 

illumination of the surface element and is given by the 

equation, 

where 
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The degree of accuracy required f o r  this computation allows 

- - 
r = r S E  and equation (52) then becomes: S l m  

b). The angle y Z l m  between the radius vector from the su r -  

face element to  the vehicle and the normal to  the su r -  

face element. 

element a s  seen from the satellite. The cosine of this 

angle is  given by equation (54). 

This angle controls the size of the surface 

- 
r l m  in this equation is defined by equation (51); 

Finally the angle Y~~~ between the incident radiation and 

the normal to the experiment surface determines the solid 

angle subtended by the experiment at the origin of radia- 

tion. This angle y 3  l,,, is  given by equation (55) 

c). 

zn here is the normal to the experiment surface in box 

coordinates. 
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I -  

1. Contribution due to a lit surface element: 

The contribution of the particular element &Ilm to the reflected 

solar heat flux at time t is given by equation (56). 

0 if the experiment is shaded by the satellite 

1 i f  the experiment is not shaded 

He re 

and 

In equation (56) y l l m ,  y 2  I m ,  ys lm and r lm a re  functions of time. The 

total reflected solar heat flux received from all surface elements is 
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This may be accumulated over a time interval from t o  to (to t N A t )  

C. Earth Emitted Radiant Heat 

This is the heat flux 4nE ( t )  incident upon a surface of the nth  ex- 

periment at time t ,  which is emitted by the Earth. In integral form 

(See Figure 5). 

where 

A = 0.02215 watts = the emittence per  unit 
a rea  of the surface of the 
Earth. 

cos y 2  cos y 3  
i f  cos y z  > 0 and cos y3  > 0 - 

2 rrr f E  - 

This is  evaluated numerically and i s  analogous to (56), (58), and 

(59), except that the angle of incidence of solar energy is immaterial. 

The equations a re  a s  follows: 

44 



The contribution from the element &Ilm to the Earth emitted heat 

flux at time t is given by equation (61). 

The total Earth emitted heat flux received from all surface elements is 

The accumulation over a time interval from to  to (to +NAt) is 
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VI. RESULTS AND DISCUSSION 

A. Shadow Study 

Figures 6 through 8 present the amount of time per orbit that the 

EGO S-49 experiments spend in the shadow of the earth, the main 

satellite structure (the box) o r  of the solar array.  These data a r e  for 

three faces of the main box +zB, -zB and -yB for the boom or  appendage 

mounted experiments (E. P. 1 through E. P. 6), and for the orbital 

plane experiment package (OPEP 1 and 2). 

sides of the main box and the experiments a r e  shown in Section III of 

The coordinates for the 

this document. 

t es t  points were assumed to be along the axes of the box coordinate 

system and slightly above the surface (0.1 inch). 

In the case of the shadowing of the faces of main box 

The shadow history 

of the test  point of each face is assumed to closely approximate the 

shadow history of the face itself. The test  point device was incorporated 

to facilitate the mathematical description and programming of the 

system. 

as follows: 

The coordinates of the main box test  points and normals a r e  
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Coordinate s 
~~~~ 

'ox Experiment 

+x 

-X 

+Y 

-Y 

+z 

-Z  

iormals 

+x 

-X 

+Y 

-Y 

+z 

- Z  

X Y z 
(inches) (inches) (inches) 

14.707 0 0 

-14. 707 0 0 

0 23. 6 0 

0 -43.6 0 

0 0 15.083 

0 0 -15.083 

1.0 

-1.0 

0 

0 

0 

0 

0 0 

0 0 

1.0 0 

-1.0 0 

0 1.0 

0 -1.0 

The study for shadowing is based on a nominal orbit (See Section I11 for 

injection conditions) with a launch date of May 15, 1964 at 13. 0 hours 

U. T. 
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1. The Main Box Experiments 

Figure 6 shows the history of shadow time per orbit for a year of 

The figure flight time for the +zB, -zB and -y, faces of the main box. 

indicates that for the +zB and -zB faces the shadow time per orbit 

varies between approximately 1 hour and 41.0 hours. The -y, face 

experiment, however, spends practically all of its time in sunlight. 

During the first 34 days in orbit the -yB face experiences shadows of 

about 0. 5 hours after which time it senses f u l l  sunlight except between 

the 144th and 152nd days after launch when the shadow time gets only 

as high as 2.5 hours. At about the 265th day after launch, the -y, face 

again goes into a period during which i t  senses about 0.5 hours shadow 

per orbit. The shadow history of this face (in fact of the whole satellite 

and experiments) i s  a function of the time of launch. Consequently, for 

other launch dates the shadow history will be different. 

2. Boom Mounted Experiments 

The time-in-shadow history of the boom mounted experiments 

(E. P. 1 through E. P. 6)  is shown in Figure 7. This time history curve 

is typical of any launch date, however the curve set  would be different 

for  different launch dates. 

The figure clearly shows that the experiments in the order E. P. 1, 

E.P. 2, E.P. 3, E.P. 5, E.P. 6 (E.P.  4 = E.P .  6 )  a r e  exposed to 

increasingly more sunlight. The maximum shadow time per orbit 
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varies from almost 40 hours for  E. P. 1 to about 2. 5 hours for E. P. 4 

and 6. 

3. OPEP 

Figure 8 presents the time-in-shadow histories of the orbit plane 

experiment packages (OPEP). 

and OPEP 2 experience some shadow time during every orbit. 

shadow times, however, vary from 41.0 hours per orbit to less  than 

The experiment packages, OPEP 1 

These 

1. 0 hours per orbit. Again, as in the other cases,  this curve set  will 

be different f o r  different launch dates. 

B. Heat Inputs 

Figures 9 through 20 present the heat inputs incident upon the 

different faces of the satellite as a function of time from perigee for 

the first orbital period (42. 75 hours). These heat inputs include the 

Earth emitted heat flux iE, the direct solar heat flux 4, and the solar 

reflected heat f l u x  qa. The solar heat input to an experiment is set  

to zero i f  that particular experiment is shielded from the Sun by the 

Earth, the main box or  the solar array.  

eclipse of the Earth the reflected solar (as well as the direct solar)  

heat input is set equal to zero. 

If an experiment is in the 

However, the effects of shadowing of 

an  experiment from the Earth by the main box or the solar a r r ay  is not 

considered in the computation of the solar reflected o r  Earth emitted 

heat inputs to that particular experiment. The reflected solar heat 
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flux is calculated by two different methods. 

puted by numerically evaluating the integral given by equation (47). 

The method of calculating the approximate values is given in Reference 

8. 

It is assumed that y ,  (average) is the angle between the vector from 

the Earth to the Sun and the vector from the Earth to the satellite. 

other words for a given location of the Earth, Sun and vehicle, the 

approximate reflected solar heat input depends only upon the angle 

between the experiment's normal and the Earth vehicle vector. 

Earth emitted and solar reflected heat inputs are negligibly small 

when the satellite is beyond an  altitude of 20,000 nautical miles o r  

correspondingly 2. 63 hours of flight time from perigee. 

these figures a r e  based on a time of injection into orbit of May 15, 

1964 a t  8.0 hours U. T. 

capability to calculate heat inputs rather than to provide design data. 

The values of the Earth emitted heat inputs depend only upon the shape 

of the orbit and a r e  independent of launch time. 

reflected solar heat inputs depend upon the relative locations of the 

Earth, the Sun and the vehicle; consequently they a r e  dependent upon 

the launch time. 

a r e  given in section 111. 

The exact value is com- 

In this method an average value is assumed for Y, in equation (47). 

In 

The 

The data in 

These curves a r e  intended to demonstrate the 

The direct  solar and 

The unit normals to the various S-49 experiments 
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1. The Main Box 

a. Earth Emitted Heat Inputs 

Figure 9 presents the Earth emitted heat inputs qE to the main 

box as a function of time f rom perigee. The +zb face has the largest  

Earth emitted heat input since it always faces the Earth. Conversely, 

the -zb face has a zero Earth emitted heat input. The +xB , -xB , +yB, 

and the -yb faces all have equal Earth emitted heat inputs due to geo- 

metrical symmetry with respect to the Earth. 

b. Direct Solar Heat Inputs. 

Figure 10 presents the direct solar heat inputs (6,) to the main 

box as a function of time from perigee. 

solar heat inputs to the +xB, -xB and +y, face a r e  always zero. 

is true since the OGO satellite is controlled such that these faces 

receive no direct solar heat. 

This is  a typical curve. The 

This 

c. Reflected Solar Heat Inputs. 

Figure 11 presents a comparison between the exact and approxi- 

mate values of the reflected solar heat inputs. 

largest  reflected solar heat input since it faces the Earth. 

face has zero reflected solar heat inputs since it faces away from the 

Earth. 

and -xB faces a r e  equal since there is symmetry with respect to these 

faces and the sun-lit portion of the Earth. The approximate values of 

The +zB face has the 

The -zB 

The exact value of the reflected solar heat inputs to the +xB 
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the reflected solar heat inputs to the +xB, -xB, +yB and -yB faces a r e  

all equal. 

equation 47. It is assumed that y ,  (average) is the angle between the 

vector from the Earth to the Sun and the vector f rom the Earth to the 

satellite. This is tantamount to assuming that for a given Earth, Sun 

and satellite configuration the amount of reflected solar heat inputs 

depends only upon the angle between the normal to the surface and the 

Earth-satellite line. Figure 11 shows that the largest  difference 

between the exact and approximate value is 1 .  16 milliwatts/cm*. 

This is true since an average value is assumed for y ,  in 

2. Boom Mounted Experiments 

Figures 12 through 14 present the heat inputs to the boom mounted 

experiment packages (E.P. 1 ,  E.P. 2, E.P. 3, E.P. 4, E.P.  5, and 

E. P. 6 )  as a function of time from perigee. 

the orientation of the faces which have the various heats incident upon 

them a r e  given in Section ILI of this report. 

were chosen for investigation since they have the largest  openings through 

which radiant heat may enter to the experiment packages. 

The normals which define 

These particular faces 

a. Earth Emitted Heat. 

Figure 12 shows the Earth emitted heat inputs to the experiment 

packages. 

input time histories. 

ments a r e  parallel to the surface of the Earth. 

All  six experiment packages have equal Earth emitted heat 

This i s  true since the normals to these experi- 
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b. Direct Solar Heat Inputs. 

Figure 13 shows the direct solar heat inputs to the experiment 

packages. 

since their normals point in the same direction. 

inputs to E. P. 1, E. P. 2, E. P. 3 and E. P. 5 a r e  identically zero. 

E. P. 4 and E. P. 6 have the same value of solar heat inputs 

The direct solar heat 

This is true since the normals to these experiments a r e  oriented such 

that they never receive sunlight. 

c. Reflected Solar Heat Inputs. 

Figure 14 presents a comparison between the exact and approxi- 

mate values of the reflected solar heat inputs to the boom mounted 

experiment packages. E. P. 4 and E. P. 6 have equal exact reflected 

solar heat flux since their normals a re  equal. Likewise E. P. 2, E. P. 3, 

and E. P. 5 have equal exact reflected solar heat flux because their 

normals are  equal. E. P. 1 through E. P. 6 have equal values of 

approximate reflected solar heat flux since the angles between their 

normals and the Earth vehicle vector a r e  all equal, i. e. , 

Figure 14 shows that the largest  difference between the exact and 

approximate values is  1. 36 millwatts/cm2. 
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2. The Solar Oriented Experiment Packages 

The solar oriented experiment packages (SOEP 1 and SOEP 2)  

both have their normals pointing toward the Sun and therefore have 

I .  

equal heat inputs. 

a. Earth Emitted Heat Inputs. 

Figure 15 shows the Earth emitted heat flux to SOEP 1 and 2. 

b. Direct Solar Heat Inputs. 

The direct solar input to SOEP 1 and 2 is constant (137.4 milliwatts/ 

c m 2 )  since it is controlled to point toward the Sun. Figure 16 shows 

that the satellite did not go into an eclipse during this particular time 

period, since the curve is continuous. 

c. Reflected Solar Heat Inputs. 

Figure 17 presents a comparison between the exact and approxi- 

mate values of the reflected solar heat inputs to SOEP 1 and 2. Figure 

17 shows that the largest  difference between the exact and approximate 

values is 1.22 milliwatts /cm2.  

3. The Orbit Plane Experiment Packages. 

The orbit plane experiment packages (OPEP 1 and OPEP 2) a r e  

controlled so that their normals lie in the orbit plane and such that 

the angle between their normals and the vehicle velocity vector is less  

- -  
than 90" (or n a rVE > 0 ). 

54 



a. Earth Emitted Heat Inputs 

Figure 18 presents the Earth emitted heat inputs to OPEP 1 and 2. 

The values a r e  equal since both OPEP normals point in the same direc- 

tion. 

b. Direct Solar Heat Inputs 

Figure 19 presents the direct solar heat inputs to OPEP 1 and 

OPEP 2. 

ing of the OPEPs by the main box. 

no solar heat input from 0. to 3 2 .  5 hours f rom perigee. 

cates that OPEP 2 is shadowed from the Sun by the main box. 

becomes shadowed by the main box at 42. 5 hours. 

The two experiments have the same inputs except for shadow- 

This figure shows that OPEP 2 has 

It also indi- 

OPEP 1 

c. Reflected Solar Heat Inputs 

Figure 20 presents a comparison between the exact and approxi- 

mate values of the reflected solar heat inputs to OPEP 1 and 2. 

1 and 2 have equal inputs since they have equal normals. 

difference between the exact and approximate values is 0. 7 3  milliwatts/ 

OPEP 

The largest  

2 cm . 
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APPENDIX A 

The Equation of a Plane 

Equations (1) and (2) in Section IV-B show a fourth order determinant 

and the analytical expression of a plane surface. The determinant and its 

relation to the analytical expression a r e  shown here. 

- 
Let:, , y,,, , r, be vectors in an orthogonal coordinate system which 

a r e  directed to any three vertices of a plane surface. 

- - -  
If T, j ,  k a r e  unit vectors along the x,  y ,  z axes respectively r I ,  

r,, r, can be expressed as: 
- -  

- - 
rn = ix ,  t Ty, t Ez, 

(A-1) 

Where r is any vector from the origin to the plane surface. Vector 

- - -  
subtraction forms the vectors u, v , w in the plane: 

= ( x - x I ) : +  ( y - y J T t  ( Z - z p  

v = r - r, (x-IC,,,): t ( y - y , ) :  t ( z - z , , , ) i i  (A-2) 

- = ( x - x , )  5 -I- ( y - y , ) T  -I- ( . - . , ) E  

- - -  
u = r - r I  

- - -  

- -  - 
w - r - r ,  

A-1 



- _ -  
Since u, v, w a r e  coplanar their triple scalar product is equal to zero. 

- - -  - 
(uxv) - w - 

u X  u Y  U z  

V z  vx 

W X  wY wz 

(A-3) 
= o  V 

Y 

Where the elements of the determinant a r e  the coefficients of r ,  7 ,  E 

-z 1 

z +  

- 2  

in equation (A-2). Hence 

X Y z 

-ym -z, -t -xm 

- Z  - 
Yn -X 

The above determinant may be expanded to: 

-x 1 -y 1 

x Y 
- 

-x n Yll 

-x 1 -y 1 -z 1 

xm Ym 

X Y Z 

zm + - - - 
-x 1 -y 1 

-xm Ym 

-Yn 

- 
- 
xn 

= o  (A-4) 

1 - Z  

= o  (A-5) - 
'rn 

-'n 

A-2 



Factoring out -1 from the 1 ,  m, n rows of each of the above determinants 

and interchanging the rows for symmetry yields: 

X Y z 

x 1  Yl z1 

'n "n 'n 

X Y z 

xm Ym 'rn 

xn "n zn 

+ 

X Y Z 

x l  Yl z1 

xm Y m  'rn 

1 y1 z 1  

z m  xm Y m  

xn Y n  'n 

X 

= o  
(A-6) 

The determinants of equation (A-6) can be considered the minors of an 

expanded fourth order determinant which has been expanded for a 

column whose elements a r e  unity. 

X Y 

x 1  Yl 

xm Ym 

xn Y n  

z 1 
1 z 1  

'm 1 

'n 

= o  

1 

Hence, the expression of a plane is described as a fourth order 

determinant. 

(A-7) 

A-3 



Expanding equation (A-7) for the elements of the first row produces: 

1 y1 z 1  

y, 2, 1 

Yn 'n 
1 

1 x 1  z 1  

-Y x, z, 1 t  

1 x" 'n 

Letting the minors of x ,  y ,  z ,  1 equal A ,  B, C, D respectively the 

analytical expression of a plane surface can be written. 

A x t B y t C z + D  = 0 

Accordingly, any plane surface can be described by the proper choice 

of A, B, C, D. For instance the i th  surface is: 

A . x t B . y t C i z + D i  = 0 (A-9) 

o r  in other words the four vector, ( A i ,  B, , Ci , D , )  describes the i* 

surface. Since a triple scalar product can be written a s  a third order 

determinant, the coefficients of the analytical expression for a plane 

A -4 



surface can be written as: 

Ai = 

I where 

Y l  

Ym 

Yn 

- ci - 

u. - 

xm (A-10) 

(A-11) 

The right hand sides of these definitions are three-vectors. 
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APPENDIX B 

The sign of a mathematical expression may be used to determine 

whether any two points a r e  on the same o r  opposite sides of a plane 

surface. 

(Si -”) (Si itk) = s Equation ( l o ) ,  Section IV 

where 

- 
Si = ( A i ,  Bi, Ci, Di) is a four-vector denoting the 

analytic representation of a 
plane containing the i th  face. 
(See Appendix A). 

is a four-vector denoting the 
position of the Sun. 

is  a four-vector denoting the 
position of an experiment 
package. 

i f  

s > 0 then Ej and E, a re  on the same side of si. 
s < O  then Rj and Rk a re  on opposite sides of si . 

s = 0 then either Rj or  Ek, or  both a r e  in the plane of si . 

In general, to determine the relative positions of two points in 

space with respect to a surface it is sufficient to establish the angles 

B-1 



between a normal vector to the surface and the position vectors 

measured from the surface to the points. 

Graphically this may be represented (See Figure B-1), where 

- 
n = normal vector 

- 
qj 

q k  

= vector f rom the surface to Ti 

= vector f rom the surface to T k  
- 

- 
r. = position vector of the Sun 

1 

- - 
= x. i t y. j t z j I ;  

= position vector of an experiment package 

J J 

- 
rk 

- 
r = vector to origin of i 

+ j  

+k 

= angle between n and Gj 

= angle between E and 6 k  

- - - -  - 
Note that n ,  qj, q,, r j  , r k  and r a r e  all three-vectors (i. e .  defined in 

3-dimensional orthogonal space), and that 

B -2 



J 

X 

EXPERIMENT PACKAGE 

SUN 
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Based on these definitions the following relationships a r e  made: 

- 

SIGN OF SIGN OF SIGN OF RELATION O F  

i [ i * $ j ) x  1 Gj andGk "Gj 1 
' q k )  

same side t t t 

t same side - 

I I t - opposite sides 

opposite sides 
t I -  l -  I 

This table may be summarized in one mathematical expression, 

(n. Gj) (" ik) = s 

When s > 0 ,  ej and qk a r e  on the same side of the surface. 

When s < 0 ,  9. and qk a r e  on opposite sides of the surface. 
1 

In order to prove that the sign of (si * Bj) (si 5) yields the 

same information as (n ij) (E * Gk) it is necessary to show the 

relationship between the two expressions. 

A.  x t B i  y t Ci z t Di = 0 (equation oL plane surface) 

"(Ai x t B .  y t Ci z t Di )  = normal to plane surface 

- 
V(A, t B i  y t  ci t D i )  = i t B~ 7 t ci i; 

B -4 



Hence, 

From the figure above it can be seen that 

These substituted into equation (B-1) yield: 

[n. (Fj -%)I[;. (Tk -T)] = s 

[ ( G  Yj) - (n ')I [(Z Tk) - (E. F)] = s 

[(Ai x j  + B i  y j  + C i  zj) - (Ai x + B i  y + C i  2 )  1 
[(Ai xk + B i  y, + Ci zk) - (Ai x + B i  y +Ci z)] = s 

Since 

Hence 

-Di . = Ai x + Bi y + Ci z 

B -5 



Defining 

and noting that 

- 
Si = (Ai, B i ,  Ci , Di) 

Equation (B-3 )  can be writ ten as 

(Si * Rj) (Si fl,) = s 

Hence, it is shown that the sign of this expression (which is identical 

to equation ( l o ) ,  Section IV)  is a valid means of determining whether 

any two points a r e  on the same o r  opposite sides of a plane surface.  

B -6 



APPENDIX C 

The Equation of a Straight Line 

The projections of the vertices of a polygonal face onto the test 

plane (See Figure C-1) a re  given by: 

- 
The line connecting two successive vertices, 

represented by the vector difference of these two vertices. 

p."  and 6." can be 
J J + 1  

Since the above expression is the equation of a straight line of the form 

ax" t by" t c = 0 

where -a/b is the slope of the line. Hence, the slope of 5,. + is: 

(Yj" - Y j ' i  

( X j "  - x j ' i  1)  
Slope = 

The slope of any straight line is the same anywhere along the line, 

consequently : 

y I' - yj It 
Yj" - Y j ' l + l  - - 
x . "  - x." xi' - X . n  

J 1 + 1  1 

c-1 



VECTOR 
PERPENDICULAR 

TO POLYGONAL PLANE 
POLYGONAL PLANE 
/ 

PROJECTION 
OF A N  EXPERIMENT \ 

TEST PLANE 
(PERPENICULAR TO 

SUNS' RADIUS VECTOR) 

i 

w/////A SHADOW CYLl NDER 

PROJECTION OF 
POLYGONAL FACE 

( i . e .  SHADOW OF FACE) 

/ 
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Expanding yields : 

-xj"y'l t x ' I  yjtl Xjlil y" - Xj'i1 yjt' t XI1 y." - X N  Yj'il - x./' y." + Xi" yj ' I  + = 0 
1 1 1  

The above equation can be written in terms of determinants: 

The determinants of equation C-6 can be considered the minors of an 

expanded third order determinant which has been expanded for a column 

whose elements are unity. 

= o  

Expanding equation C-7 for the elements of the first row produces: 

/ I  I1 

x"(yj"- yjl;l) - y"(x." 1 - XjtL) + (Xi yj + 1  -xjll+l yjlj = 0 ( C - 8 )  

Letting 

' 1  - - 
a .  - Yj Y j t k l  

b j  J 1 + 1  

c .  = xi Y j + 1  - X j + 1 Y j  I1 

1 

- - - X . I 1  -t x." 

,I I 1  I1 

I 

c -3 



Hence, the familiar straight line formula: 

a .  x “  t b j  y ”  t c .  = 0 
J J 

This equation can be considered the resul t  of a dot product of two three-  

vectors: 

- - = ( a j ,  bj  c j )  
L j ,  j + I  

- p = (x”, y”, 1) 

- - p = ai x’’ t bj  y” t c j  = 0 
L j , j + l  

c -4 

(C-10) 

(C-11) 

(C-12) 
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APPENDIX D 

The Sh;dow Test 

In order to test whether or not an experiment is in the shadow of 

the satellite the experiment is investigated with respect to each surface 

of the satellite and to the cylindrical projected shadows from each of 

these surfaces. The polygonal surface and the experiments a r e  pro- 

jected onto a test plane which i s  perpendicular to the Sun's light rays. 

(See Figure C-1, p. C-2. ) If a given point on the test plane (i. e. the 

projection of an experiment onto the test  plane lies within the bounda- 

ries of the polygonal shadow on that plane the experiment will neces- 

sarily have to be in the cylindrical shadow since the Sun and experi- 

ment a r e  on opposite sides of the satellite surface. If the boundary of 

the polygonal shadow is described by a ser ies  of vectors where 

j = 0 ,  1, 2, ... M - 1 for an M sided polygon connected tip to tail in 

clockwise fashion and if the given point lies on the right hand side of 

each of these boundary-describing vectors the given point must lie 

within the boundary. If the point lies to the left of any side of the poly- 

gon the point cannot be within the boundary and hence is not in the 

shadow of that surface of the satellite. 

- 
z j  , + 

D- 1 



Graphically this may be represented as: 

In this case the given point lies 
to the right of each vector and 
the experiment is  in the shadow. 

G I V E N  
PO I NT 

0 Given Point 

In this case the given point lies 
to the right of some but not all 
of the boundary describing vectors 
and hence the experiment is not in 
the shadow of the surface causing 
this polygonal shadow. It may be 
in the shadow of another surface. 

The sides of the polygon a r e  represented by: 

- 
(See Appendix C) 

- - - 
' j , j + I  - pj''+l - p j 0  

where 

. -  
J - 0, 1, 2 ,  * a *  M -  1 

M = number of sides on polygon 

and 



The vector <," is the projection of an experiment package on the test 

plane in the pi'' system. 

Let 

- - 
E n = q,," - p," (See Figure C-1 page C-2) 

and also let 

l ies in the plane of the polygon and is perpendicular to Ti, 1. 

U P En > 0 for  all j from 0 to M -  1 the experiment projection will lie to 

the right hand side of each ti, + and consequently in the polygonal 

shadow. the experiment projection cannot lie 

within the polygonal shadow and consequently the experiment package 

cannot be in the cylindrical shadow projected from the polygon in 

space. 

U for any j , @ En 5 0 

It is shown here that 

Where 

D-3 



a re  three-vectors defined on page D-6. 

(YjJi2 -Fjll) XTj * + 

- - 

- 7, k“ 
0 

- I I  i 

( X j ’ i 2  - X j ” )  

( X j l i l  -x.I ‘)  1 ( Y j l i l  - y j “ )  0 
( Y j 1 i 2  - Yj”)  

But 

(See Appendix C )  

D-4 



Hence : 

- 
M - E n = {(xjl'+, -xjt l )  a j  + (y j t i2  -yjl') bj} 

{p: -x i )  a j  + (y," -yj") bj} 

- - {aj x j 1 i 2  - a j  xj" + b j  yjt12 - b j  yjtt} 

- - {aj 

(D-10) (ej xnl) - a .  x " t bj  y,II - b j  yj"} ~i 

+ bj y j t i2  - x .  It y .  It + x j ' i l  yj"} 
J 1 ' 1  

Since 

(See Appendix C) - It I1 

cj - x j  Y j + l  -xj"+1 Yj" 

The above expression can be thought of as the product of two dot 

products : 

E n = [ (a j ,  b j ,  c j )  (xj'k2, yjt'+,, l ) ] [ (aj ,  b j ,  Cj) ( X n l ) ~  Y,", l)] (D-12) 

This can be written as: 

- - 
R * E n  = ( E , , , + l  . P j + 2 ) ( L j , j + l  . Q n )  (D-13) 

D-5 



Where 

- - 
L j ,  j + l  = ( a j ,  b j p  cj)  is a three-vector denoting the 

analytical expression of a line which 
i s  a boundary of the polygonal shadow 
of a surface of the satellite. 

- = (xj1;2, Yj l ‘+2 ,  1) is  a three-vector denoting the posi- 
tion of the pj’i2 vertex. 

- 
Pj + 2  

- I1 I I  i s  a three-vector denoting the posi- 
tion of the projection of the nth ex- 
periment on the test plane. 

- 
Cin = (X” 9 Y” 9 1) 

Hence the test can be written as:  

(On Lj , j + 1) (pj + 2  cj, j + l )  > o  (D-14) 

for all j = 0, 1, 2 M - 1 . This i s  identically equal to equation 

(22)  in Section IV B. The derivation shown in this appendix proves that 

equation (22)  is a valid means of determining whether or not an experi- 

ment i s  in the shadow of a plane surface in space (i. e. a component 

part  of a satellite) providing that the Sun and experiment a r e  on oppo- 

site sides of the plane surface in space. 
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